Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JBRA Assist Reprod ; 28(1): 66-77, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37962970

RESUMO

OBJECTIVE: The impact of the anti-depressant therapy on gonadal function has been recognized and discussed over the years. However, data to supplement our understanding of the impact of arjunolic acid (AA) therapies in protecting against FXT-induced gonadal dysfunction is lacking clear scientific evidence. Hence, this study aimed to investigate the possible effect of AA on fluoxetine-induced altered testicular function in rats. METHODS: After 14 days acclimatization, Thirty-six (36) adult male rats were randomly divided into 6 groups (n=6). Rats in groups 1 received normal saline (10mL/kg); groups 2 & 3 were given AA (1.0mg/kg body weight) and AA (2.0mg/kg body weight), respectively; whereas, rats in group 4 were given FXT (10mg/kg/p.o/day), and groups 5 & 6 were given a combination of FXT (10mg/kg) + AA (1.0mg/kg body weight); and FXT (10mg/kg) + AA (2.0mg/kg body weight), respectively. RESULTS: The results shows that FXT significantly altered testicular steroidogenic enzymes (3ß-HSD and 17ß-HSD) and proton pump ATPase (Na+/K+ ATPase, Ca2+ ATPase and H+ ATPase) activities, as well as testicular architecture when compared with controls. More so, FXT caused oxido-inflammation and apoptosis, as evidence by increases in MDA, MPO, TNF-α, IL-1ß, Caspase 3 and p53. However, AA at a different dose significantly ameliorated the destructive impacts of FXT on steroidogenic enzymes, proton pump ATPase as well as increased Bcl-2, SOD, CAT, GSH and improved testicular architecture in rats. CONCLUSIONS: AA reverses fluoxetine-induced alterations in testicular steroidogenic enzymes and membrane-bound ionic pump through suppression of oxido-inflammatory stress and apoptosis.


Assuntos
Apoptose , Fluoxetina , Triterpenos , Ratos , Masculino , Animais , Fluoxetina/farmacologia , Peso Corporal , Adenosina Trifosfatases/farmacologia , Bombas de Próton/farmacologia
2.
Pestic Biochem Physiol ; 188: 105224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464344

RESUMO

The study investigated the effects of quercetin and putative mechanisms involved against endosulfan-testicular impairments in rats. Rats were allotted into five treatment groups (n = 5). Groups 1-2 had normal saline and maize oil (vehicle) (10 mL/kg), group 3 received quercetin (20 mg/kg), 4-5 had endosulfan (5 mg/kg, p.o) orally for 28 days. However, from days 14-28, group 4 received an additional dose of vehicle (10 mL/kg, p.o./day), while group 5 received quercetin (20 mg/kg, p.o./day). Thereafter, blood samples and testes were harvested for markers of cholinergic, hormonal and testicular oxido-nitrergic, inflammatory, apoptosis and proton pump ATPase activities. Also, testicular histopathological changes were also evaluated alongside with germ cell count, testicular injury and spermatogenesis score. Quercetin increased testicular/body weights and spermatogenesis, androgenic hormones (follicle stimulating hormones, FSH; luteinizing hormone, LH; testosterone), acetylcholinesterase levels and attenuated altered membrane integrity, DNA fragmentation, increased caspases-3 levels in rats exposed to endosulfan. Moreover, quercetin increased testicular B-cell lymphoma-2 (Bcl-2), Bcl-2 associated x-protein (Bax) and proton pump adenosine trisphosphate (ATPase) and sialic acid levels. Of note, quercetin reversed endosulfan-mediated increased malondialdehyde, nitrite, peroxynitrite formation, 8-hydroxy-2'-deoxyguanosine and lowered antioxidant enzymes in the testes. The increased levels of testicular myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1ß) by endosulfan were also reduced by quercetin administration. Additionally, quercetin attenuate endosulfan-induced testicular histopathological changes of rats. Our findings showed that quercetin significantly inhibited endosulfan-induced testicular damage and altered spermatogenesis through inhibition of oxido-nitrergic pathway, inflammatory mediators, apoptosis, acetylcholinesterase activity and enhancement of testicular hormones and improvement in testicular ATPase activity.


Assuntos
Endossulfano , Testículo , Masculino , Ratos , Animais , Endossulfano/toxicidade , Quercetina/farmacologia , Acetilcolinesterase , Adenosina Trifosfatases , Hormônios , Proteínas Proto-Oncogênicas c-bcl-2
3.
Drug Metab Pers Ther ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085634

RESUMO

Objectives Adansonia digitata L. is popularly known for the management of various neurological diseases in ethno-medicine. Studies have shown that lead toxicity is a possible risk factor for early onset of neurodegenerative disease. Hence, this study was designed to evaluate the effect of A. digitata aqueous leaf extract (ADALE) against lead-induced oxidative stress and histo-architectural changes in the prefrontal cortex of adult Wistar rats. Methods Saline (10 mL/kg), ADALE (500 and 1000 mg/kg) and EDTA (55 mg/kg) were pretreated orally 30 min prior to lead acetate (LA) (120 mg/kg) administration to male Wistar rats (n=7) for 21 days. Thereafter, standard biochemical (superoxide dismutate, catalase, glutathionxe and malondialdehyde), histological (H&E) and histochemical assessment (crystyl fast violet stain for nissil substance) were carried out in the prefrontal cortex. Results ADALE significantly (p<0.05) reversed LA-induced oxidative stress, as evidenced by increased catalase, superoxide dismutase and oxidized glutathione levels, and decreased malondialdehyde concentration in the prefrontal cortex. Also, the increase chromatolysis and neuronal pyknosis of the pyramidal neurons of the prefrontal cortex were significantly attenuated by ADALE. Conclusions The result of this study showed that A. digitata aqueous leaf extract attenuated lead acetate-induced cortical neurodegeneration via inhibition of oxidative stress.

4.
Metab Brain Dis ; 35(7): 1145-1156, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653975

RESUMO

Morin hydrate (MH) is the major flavonoid constituent of Morus alba acclaimed to have antioxidant, anti-inflammatory, anti-stress and neuroprotective properties. However, report on the effect of MH on memory performance and the underlying mechanism following chronic stress exposure is lacking. The current study aimed at investigating the neuroprotective effect of MH on chronic unpredictable stress (CUS)-induced memory impairment in mice using the Y maze test. Mice were subjected to unpredicted stress for 14 days, during which MH (5, 10 and 20 mg/kg i.p) or 25 mg/kg Ginseng was administered to them. On the 14th day, 1 h after treatment, learning and memory deficit was evaluated using the Y maze test and thereafter brains were harvested for the estimation of glutathione (GSH), lipid peroxidation product; malondialdehyde (MDA) and nitrite. Levels of inflammatory mediators tumor necrosis factor-alpha (TNF-α) and interleukin1-beta (IL-1ß), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-кB) expressions were also determined. The hippocampus was stained with hematoxylin-eosin (H&E) to examine any morphological changes in the neurons. Mice exposed to CUS showed evidence of impaired memory and increase levels of MDA, nitrite, TNF-α and IL-1ß. Furthermore, CUS reduced GSH level, increased the expressions of iNOS and NFкB immune-positive cells and produced loss of neuronal cells in the hippocampus. The MH treatment however improved memory, reduced MDA and nitrite levels, and enhanced brain GSH levels in CUS-mice. Besides, MH reduced brain levels of TNF-α and IL-1ß levels, down regulated the expressions of iNOS and NF-кB and rescue neurons in the hippocampal CA3 region of mice exposed to CUS. The results of the study indicate that MH improved CUS-induced memory impairment, which may be related to its ability to boost antioxidant defense system and suppress neuroinflammatory pathways.


Assuntos
Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Citocinas/metabolismo , Flavonoides/uso terapêutico , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Drug Res (Stuttg) ; 69(10): 551-558, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31141826

RESUMO

Pycnanthus angolensis (Welw) Warb., Myristicaceae, is used extensively in ethnomedicine. Numerous health benefits have been ascribed to the use of different parts of P. angolensis including its role in cognitive function and inflammatory conditions. Hence, this study was undertaken to investigate the effect of stem bark of the plant on memory function in mice.The plant material was pulverized into powder and extracted by maceration with 80% methanol at room temperature for 48 h. This was subsequently fractionated using N-hexane, Dichloromethane (DCM) and Ethyl acetate. The Dichloromethane fraction which is the most potent fraction (25, 50 and 100 mg/kg) was evaluated for memory enhancing activity using the Y-maze (YMT), morris water maze (MWM) and the elevated plus maze (EPM) on D-galactose plus scopolamine and ketamine induced amnesia. The antioxidant markers and acetylcholinesterase (AChE) inhibiting effect of DCM were also investigated.The results obtained from the behavioural study indicates that the DCM fraction significantly (p<0.05) increased alternation behaviour of mice in the YMT, decreased the escape latency in the MWM paradigm and decreased the transfer latency in the EPM. Biochemically, DCM increased glutathione, and superoxide dismutase, but decreased malondialdehyde and AChE activity in the brain.The findings therefore suggests that the DCM possesses significant memory enhancing activity, which may be due to enhancement of antioxidant activity and cholinergic transmission. The attenuation of the effect of ketamine by the DCM may possibly result from an increase in NMDA receptor mediated neurotransmission and attenuation of oxidative stress.


Assuntos
Amnésia/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Myristicaceae/química , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Amnésia/induzido quimicamente , Amnésia/patologia , Animais , Encéfalo/patologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/uso terapêutico , Modelos Animais de Doenças , Galactose/toxicidade , Humanos , Ketamina/toxicidade , Masculino , Aprendizagem em Labirinto , Cloreto de Metileno/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Receptores de N-Metil-D-Aspartato/metabolismo , Escopolamina/toxicidade , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA